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ABSTRACT
Algorithmic choice is essential in any problem domain to re-
alizing optimal computational performance. Multigrid is a
prime example: not only is it possible to make choices at the
highest grid resolution, but a program can switch techniques
as the problem is recursively attacked on coarser grid levels
to take advantage of algorithms with different scaling behav-
iors. Additionally, users with different convergence criteria
must experiment with parameters to yield a tuned algorithm
that meets their accuracy requirements. Even after a tuned
algorithm has been found, users often have to start all over
when migrating from one machine to another.

We present an algorithm and autotuning methodology
that address these issues in a near-optimal and efficient man-
ner. The freedom of independently tuning both the algo-
rithm and the number of iterations at each recursion level re-
sults in an exponential search space of tuned algorithms that
have different accuracies and performances. To search this
space efficiently, our autotuner utilizes a novel dynamic pro-
gramming method to build efficient tuned algorithms from
the bottom up. The results are customized multigrid al-
gorithms that invest targeted computational power to yield
the accuracy required by the user.

The techniques we describe allow the user to automati-
cally generate tuned multigrid cycles of different shapes tar-
geted to the user’s specific combination of problem, hard-
ware, and accuracy requirements. These cycle shapes dic-
tate the order in which grid coarsening and grid refinement
are interleaved with both iterative methods, such as Jacobi
or Successive Over-Relaxation, as well as direct methods,
which tend to have superior performance for small problem
sizes. The need to make choices between all of these meth-
ods brings the issue of variable accuracy to the forefront.
Not only must the autotuning framework compare different
possible multigrid cycle shapes against each other, but it
also needs the ability to compare tuned cycles against both
direct and (non-multigrid) iterative methods. We address
this problem by using an accuracy metric for measuring the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC09 November 14-20, 2009, Portland, Oregon, USA
Copyright 2009 ACM 978-1-60558-744-8/09/11 ...$10.00.

effectiveness of tuned cycle shapes and making comparisons
over all algorithmic types based on this common yardstick.
In our results, we find that the flexibility to trade perfor-
mance versus accuracy at all levels of recursive computation
enables us to achieve excellent performance on a variety of
platforms compared to algorithmically static implementa-
tions of multigrid.

Our implementation uses PetaBricks, an implicitly paral-
lel programming language where algorithmic choices are ex-
posed in the language. The PetaBricks compiler uses these
choices to analyze, autotune, and verify the PetaBricks pro-
gram. These language features, most notably the autotuner,
were key in enabling our implementation to be clear, correct,
and fast.

1. INTRODUCTION
While multigrid is currently one of the most popular tech-

niques for efficiently solving partial differential equations
over a grid, it has become clear that restricting ourselves
to a single technique in any problem domain is rarely the
optimal strategy. It is often the case that we want to choose
between different algorithms based on some characteristics
of the input. For example, we may use the input’s magni-
tude as the criteria in a factoring algorithm or the input’s
length in a sorting algorithm. The optimal cutoff is almost
always dependent on underlying machine properties, and it
is the goal of autotuning packages such as FFTW [7, 8],
ATLAS [17, 18], and OSKI [16] to discover which situations
warrant the application of each available technique.

In some cases, tuning algorithmic choice could simply
mean choosing the appropriate top-level technique during
the initial function invocation; however, for many problems
including multigrid, it is better to be able to utilize multiple
techniques within a single function call or solve. For exam-
ple, in the C++ Standard Template Library’s sort routine,
the algorithm switches from using the divide-and-conquer
O(n logn) merge sort to O(n2) insertion sort once the work-
ing array size falls below a set cutoff. In multigrid, an anal-
ogous strategy might switch from recursive multigrid calls
to a direct method such as Cholesky factorization and tri-
angular solve once the problem size falls below a threshold.

This paper analyzes the optimizations of algorithmic choice
in multigrid. When confronted with the problem of training
the autotuner to choose between a recursive multigrid call
and a call to an iterative or direct solver, one quickly real-
izes that no comparison between methods can be fair with-
out considering the relative accuracies of each. Indeed, we
found that in some cases sacrificing accuracy at lower levels



of recursion has little impact on the accuracy of the final re-
sult, while in other cases improving accuracy at a lower level
reduces the number of (more expensive) iterations needed at
a higher level.

In this paper we describe a novel dynamic programming
strategy that allows us to make fair comparisons between
various iterative, recursive, and direct methods, resulting in
an efficient, tuned algorithm for user-specified convergence
criteria. The resulting algorithms can be visualized as tuned
multigrid cycles that apply targeted computational power
to meet the accuracy requirements of the user. Our me-
thodology does not tune cycle shapes by manipulating the
shapes directly; it instead categorizes algorithms based on
the accuracy of the results produced, allowing it to com-
pare all types of algorithms (direct, iterative, and recursive)
and make tuning decisions based on that common yardstick.
Additionally, our tuning algorithm has the flexibility of uti-
lizing different accuracy constraints for various components
within a single algorithm, allowing the autotuner to inde-
pendently trade performance and accuracy at each level of
multigrid recursion.

This work on multigrid was developed using the Peta-
Bricks programming language [2]. PetaBricks is an implic-
itly parallel programming language where algorithmic choice
is a first class construct, to help programmers express and
tune algorithmic choices and cutoffs such as these to ob-
tain the fastest combination of algorithms to solve a prob-
lem. While traditional compiler optimizations can be suc-
cessful at optimizing a single algorithm, when an algorithmic
change is required to boost performance the burden is put
on the programmer to incorporate the new algorithm. Pro-
grams written in PetaBricks can naturally describe multiple
algorithms for solving a problem and how they can fit to-
gether. This information is used by the PetaBricks compiler
and runtime to create and autotune an optimized multigrid
algorithm.

1.1 Outline
We first describe in Section 2 the algorithmic choices avail-

able in multigrid and detail the dynamic programming ap-
proach to autotuning for accuracy and performance. Sec-
tion 3 describes the PetaBricks language and implementa-
tion of the compiler and autotuning system that makes tun-
ing over algorithmic choice possible. Section 4 presents ex-
perimental results. Finally, Sections 5, 6 and 7 describe
related work, future work, and conclusions.

1.2 Contributions
We make the following contributions:

• We introduce an autotuner that can tune over algo-
rithmic choice in multigrid problems.

• We describe how an accuracy metric can be used to
make reasonable comparisons between direct, iterative,
and recursive algorithms in a multigrid setting for the
purposes of autotuning.

• We show how the use of dynamic programming can
help us efficiently build tuned multigrid algorithms
that combine methods with varying levels of accuracy
while providing that a final target accuracy is met.

• We demonstrate that the performance of our tuned
multigrid algorithms is superior to more basic reference

approaches.

• We show that optimally tuned multigrid algorithms
can be dependent on machine architecture, demon-
strating the utility of a portable solution.

2. AUTOTUNING MULTIGRID
Although multigrid is a versatile technique that can be

used to solve many different types of problems, we will use
the 2D Poisson’s equation as an example and benchmark
to guide our discussion. The techniques presented here are
generalizable to higher dimensions and the broader set of
multigrid problems.

Poisson’s equation is a partial differential equation that
describes many processes in physics, electrostatics, fluid dy-
namics, and various other engineering disciplines. The con-
tinuous and discrete versions are

52φ = f and Tx = b, (1)

where T , x, and b are the finite difference discretizations of
the Laplace operator, φ, and f , respectively.

To build an autotuned multigrid solver for Poisson’s equa-
tion, we consider the use of three basic algorithmic building
blocks: one direct (band Cholesky factorization through LA-
PACK’s DPBSV routine), one iterative (Red-Black Succes-
sive Over Relaxation), and one recursive (multigrid). The
table below shows the computational complexity of using
any single algorithm to compute a solution.

Algorithm Direct SOR Multigrid

Complexity n2 (N4) n1.5 (N3) n (N2)

From left to right, each of the methods has a larger over-
head, but yields a better asymptotic serial complexity [6].
N is the size of the grid on a side, and n = N2 is the number
of cells in the grid.

2.1 Algorithmic choice in multigrid
Multigrid is a recursive algorithm that uses the solution

to a coarser grid resolution as part of the algorithm. We will
first address tuning symmetric “V-type” cycles. An exten-
sion to full multigrid will be presented in Section 2.4.

For simplicity, we assume all inputs are of size N = 2k +1
for some positive integer k. Let x be the initial state of the
grid, and b be the right hand side of Equation (1).

MULTIGRID-V-SIMPLE(x, b)

1: if N = 3 then
2: Solve directly
3: else
4: Relax using some iterative method
5: Compute the residual and restrict to half resolution
6: Recursively call MULTIGRID-V-SIMPLE on coarser grid
7: Interpolate result and add correction term to current

solution
8: Relax using some iterative method
9: end if

It is at the recursive call on line 6 that our autotuning
compiler can make a choice of whether to continue making
recursive calls to multigrid or take a shortcut by using the
direct solver or one of the iterative solvers at the current res-
olution. Figure 1 shows these possible paths of the multigrid
algorithm.



Figure 1: Simplified illustration of choices in the
multigrid algorithm. The diagonal arrows represent
the recursive case, while the dotted horizontal ar-
rows represent the shortcut case where a direct or
iterative solution may be substituted. Depending
on the desired level of accuracy a different choice
may be optimal at each decision point. This fig-
ure does not illustrate the autotuner’s capability of
using multiple iterations at different levels of recur-
sion; it shows a single iteration at each level.

The idea of choice can be implemented by defining a top
level function MULTIGRID-V, which makes calls to either the
direct, iterative, or recursive solution. The function RECURSE

implements the recursive solution.

MULTIGRID-V(x, b)

1: either
2: Solve directly
3: Use an iterative method
4: Call RECURSE for some number of iterations
5: end either

RECURSE(x, b)

1: if N = 3 then
2: Solve directly
3: else
4: Relax using some iterative method
5: Compute the residual and restrict to half resolution
6: On the coarser grid, call MULTIGRID-V
7: Interpolate result and add correction term to current

solution
8: Relax using some iterative method
9: end if

Making the choice in line 1 of MULTIGRID-V has two impli-
cations. First, the time to complete the algorithm is choice
dependent. Second, the accuracy of the result is also de-
pendent on choice since the various methods have different
abilities to reduce error (depending on parameters such as
number of iterations or weights). To make a fair comparison
between choices, we must take both performance and accu-
racy of each choice into account. To this end, during the
tuning process, we keep track of not just a single optimal
algorithm at every recursion level, but a set of such optimal
algorithms for varying levels of desired accuracy.

2.2 Full dynamic programming solution
We will first describe a full dynamic programming solution

to handling variable accuracy, then restrict it to a discrete
set of accuracies. We define an algorithm’s accuracy level to
be the ratio between the error norm of its input xin versus
the error norm of its output xout compared to the optimal

(a) (b)

Figure 2: (a) Possible algorithmic choices with op-
timal set designated by squares (both hollow and
solid). The choices designated by solid squares are
the ones remembered by the PetaBricks compiler,
being the fastest algorithms better than each accu-
racy cutoff line. (b) Choices across different accura-
cies in multigrid. At each level, the autotuner picks
the best algorithm one level down to make a recur-
sive call. The path highlighted in red is an example
of a possible path for accuracy level p2

solution xopt:

||xin − xopt||2
||xout − xopt||2

.

We choose this ratio instead of its reciprocal so that a higher
accuracy level is better, which is more intuitive. In order to
measure the accuracy level of a potential tuned algorithm,
we assume we have access to representative training data
so that the accuracy level of our algorithms during tuning
closely reflects their accuracy level during use.

Let level k refer to an input size of N = 2k + 1. Suppose
that for level k − 1, we have solved for some set Ak−1 of
optimal algorithms, where optimality is defined such that
no optimal algorithm is dominated by any other algorithm
in both accuracy and compute time.

In order to construct the optimal set Ak, we try substi-
tuting all algorithms in Ak−1 for step 6 of RECURSE. We also
try varying parameters in the other steps of the algorithm,
including the choice of iterative methods and the number of
iterations (possibly zero) in steps 4 and 8 of RECURSE and
steps 3 and 4 of MULTIGRID-V.

Trying all of these possibilities will yield many algorithms
that can be plotted as in Figure 2(a) according to their ac-
curacy and compute time. The optimal algorithms we add
to Ak are the dominant ones designated by square markers.

The reason to remember algorithms of multiple accuracies
for use in step 6 of RECURSE is that it may be better to use a
less accurate, fast algorithm and then iterate multiple times,
rather than use a more accurate, slow algorithm. Note that
even if we use a direct solver in step 6, the interpolation in
step 7 will invariably introduce error at the higher resolution.

2.3 Discrete dynamic programming solution
Since the optimal set of tuned algorithms can grow to be

very large, the PetaBricks autotuner offers an approximate
version of the above solution. Instead of remembering the
full optimal set Ak, the compiler remembers the fastest al-



gorithm yielding an accuracy of at least pi for each pi in
some set {p1, p2, . . . , pm}. The vertical lines in Figure 2(a)
indicate the discrete accuracy levels pi, and the optimal al-
gorithms (designated by solid squares) are the ones remem-
bered by PetaBricks. Each highlighted algorithm is associ-
ated with a function MULTIGRID-Vi, which achieves accuracy
pi on all input sizes.

Due to restricted time and computational resources, to
further narrow the search space, we only use SOR as the
iteration function since we found experimentally that it per-
formed better than weighted Jacobi on our particular train-
ing data for similar computation cost per iteration. In
MULTIGRID-Vi, we fix the weight parameter of SOR to ωopt,
the optimal value for the 2D discrete Poisson’s equation with
fixed boundaries [6]. In RECURSEi, we fix SOR’s weight pa-
rameter to 1.15 (chosen by experimentation to be a good
parameter when used in multigrid). We also fix the number
of iterations of SOR in steps 4 and 8 in RECURSEi to one.
As more powerful computational resources become available
over time, the restrictions on the algorithmic search space
presented here may be relaxed to find a more optimal solu-
tion.

The resulting accuracy-aware Poisson solver is a family of
functions, where i is the accuracy parameter:

MULTIGRID-Vi(x, b)

1: either
2: Solve directly
3: Iterate using SORωopt until accuracy pi is achieved
4: For some j, iterate with RECURSEj until accuracy pi

is achieved
5: end either

RECURSEi(x, b)

1: if N = 3 then
2: Solve directly
3: else
4: Compute one iteration of SOR1.15

5: Compute the residual and restrict to half resolution
6: On the coarser grid, call MULTIGRID-Vi

7: Interpolate result and add correction term to current
solution

8: Compute one iteration of SOR1.15

9: end if

The autotuning process determines what choices to make
in MULTIGRID-Vi for each i and for each input size. Since the
optimal choice for any single accuracy for an input of size
2k + 1 depends on the optimal algorithms for all accuracies
for inputs of size 2k−1+1, the PetaBricks autotuner tunes all
accuracies at a given level before moving to a higher level. In
this way, the autotuner builds optimal algorithms for every
specified accuracy level and for each input size up to a user
specified maximum, making use of the tuned sub-algorithms
as it goes.

The final set of multigrid algorithms produced by the au-
totuner can be visualized as in Figure 2(b). Each of the
versions has the flexibility to choose any of the other ver-
sions during its recursive calls, and the optimal path may
switch between accuracies many times as we recurse down
towards either the base case or a shortcut case.

Figure 3: Conceptual breakdown of full multigrid
into an estimation phase and a solve phase. The es-
timation phase can be thought of as just a recursive
call to full multigrid up to a coarser grid resolution.
We make use of this recursive structure, in addi-
tion to our autotuned “V-type” multigrid cycles, in
constructing tuned full multigrid cycles.

2.4 Extension to Autotuning Full Multigrid
Full multigrid methods have been shown to exhibit bet-

ter convergence behavior than traditional symmetric cycle
shapes such as the V and W cycles by utilizing an estimation
phase before the solve phase (see Figure 3). The estimation
phase of the full multigrid algorithm can be thought of as
just a recursive call to itself at a coarser grid resolution. We
extend the autotuning ideas presented thus far to leverage
this structure and produce autotuned full multigrid cycles.

The following simplified code for ESTIMATE and
FULL-MULTIGRID illustrates how to construct an autotuned
full multigrid cycle.

ESTIMATEi(x, b)

1: Compute residual and restrict to half resolution
2: Call FULL-MULTIGRIDi on restricted problem
3: Interpolate result and add correction to x

FULL-MULTIGRIDi(x, b)

1: either
2: Solve directly
3: For some j, compute estimate by calling ESTIMATEj(x, b),

then either:
4: Iterate using SORωopt until accuracy pi is achieved
5: For some k, iterate with RECURSEk until accuracy
pi is achieved

6: end either

Here we take advantage of the discrete dynamic program-
ming analogue presented in Section 2.3 where we maintain
only finite sets of optimized functions FULL-MULTIGRIDj and
MULTIGRID-Vk to use in recursive calls. In FULL-MULTIGRIDi,
there are three choices: the first is just a direct solve (line
2), while the latter two choices (lines 4 and 5) are similar
to those given in MULTIGRID-Vi except an estimate is first
calculated and then used as a starting point for iteration.
Note that this structure is descriptive enough to include the
standard full multigrid V or W cycle shapes, just as the
MULTIGRID-Vi algorithm can produce standard regular V or
W cycles.

The parameters j and k in FULL-MULTIGRID can be chosen
independently, providing a great deal of flexibility in the



construction of the optimized full multigrid cycle shape. In
cases where the user does not require much accuracy in the
final output, it may make sense to invest more heavily in the
estimation phase, while in cases where very high precision is
needed, a high precision estimate may not be as helpful as
most of the computation would be done in relaxations at the
highest resolution. Indeed, we found patterns of this type
during our experiments.

2.5 Limitations
It should be clear that the algorithms produced by the

autotuner are not meant to be optimal in any theoretical
sense. Because of the compromises made in the name of ef-
ficiency, the resulting autotuning algorithm merely strives to
discover near-optimal algorithms from within the restricted
space of cycle shapes reachable during the search. There are
many cycle shapes that fall outside the space of searched
algorithms; for example, our approach does not check algo-
rithms that utilize different choices in succession at the same
recursion depth instead of choosing a single choice and iter-
ating. Future work may examine the extent to which this
restriction impacts performance.

Additionally, the scalar accuracy metric is an imperfect
measure of the effectiveness of a multigrid cycle. Each cycle
may have different effects on the various error modes (fre-
quencies) of the current guess, all of which would be impossi-
ble to capture in a single number. Future work may expand
the notion of an “optimal” set of sub-algorithms to include
separate classes of algorithms that work best to reduce dif-
ferent types of error. Though such an approach could lead
to a better final tuned algorithm, this extension would ob-
viously make the auto-tuning process more complex.

We will demonstrate in Section 4 that although our me-
thodology is not exhaustive, it can be quite descriptive, dis-
covering cycle shapes that are both unconventional and effi-
cient. That section will present actual cycle shapes produced
by our multigrid autotuner and show their performance com-
pared to less sophisticated heuristics. We will first describe
the PetaBricks language and autotuning compiler in further
detail.

3. PETABRICKS LANGUAGE
A key element that made our approach to multigrid pos-

sible was the PetaBricks programming language [2]. Peta-
Bricks is a new implicitly parallel programming language in
which algorithmic choice is a first class language construct.
PetaBricks programs describe many possible ways to solve a
problem and how they fit together. The PetaBricks compiler
and runtime use these choices to autotune the program in
order to find an optimal hybrid algorithm. Our implementa-
tion was written in the PetaBricks language, and we use the
PetaBricks autotuner to tune our algorithms. For more in-
formation about the PetaBricks language and compiler see
our prior work [2]; the following summary is included for
background.

3.1 PetaBricks Language Design
The main goal of the PetaBricks language was to expose

algorithmic choice to the compiler in order to empower the
compiler to perform autotuning over aspects of the program
not normally available to it. PetaBricks is an implicitly par-
allel language, where the compiler automatically parallelizes
PetaBricks programs.

The PetaBricks language is built around two major con-
structs, transforms and rules. The transform, analogous to
a function, defines an algorithm that can be called from
other transforms or invoked from the command line. The
header for a transform defines to, from, and through argu-
ments, which represent inputs, outputs, and intermediate
data used within the transform. The size in each dimension
of these arguments is expressed symbolically in terms of free
variables, the values of which must be determined by the
PetaBricks runtime.

The user encodes choice by defining multiple rules in each
transform. Each rule computes a region of data in order to
make progress towards a final goal state. Rules can have
different granularities and intermediate state. The compiler
is required to find a sequence of rule applications that will
compute all outputs of the program. Rules have explicit
dependencies, allowing automatic parallelization and auto-
matic detection and handling of corner cases by the com-
piler. The rule header references to and from regions which
are the inputs and outputs for the rule. Free variables in
these regions can be set by the compiler allowing a rule to
be applied repeatedly in order to compute a larger data re-
gion. The body of a rule consists of C++-like code to perform
the actual work.

3.2 PetaBricks Implementation
The PetaBricks implementation consists of three compo-

nents: a source-to-source compiler from the PetaBricks lan-
guage to C++, an autotuning system and choice framework
to find optimal choices and set parameters, and a runtime
library used by the generated code.

3.2.1 PetaBricks Compiler
The PetaBricks compiler works using three main phases.

In the first phase, applicable regions (regions where each
rule can legally be applied) are calculated for each possi-
ble choice using an inference system. Next, the applicable
regions are aggregated together into choice grids. The choice
grid divides each matrix into rectilinear regions where uni-
form sets of rules may legally be applied. Finally, a choice
dependency graph is constructed and analyzed. The choice
dependency graph consists of edges between symbolic re-
gions in the choice grids. Each edge is annotated with the
set of choices that require that edge, a direction of the data
dependency, and an offset between rule centers for that de-
pendency. The output code is generated from this choice
dependency graph.

PetaBricks code generation has two modes. In the default
mode, choices and information for autotuning are embed-
ded in the output code. This binary can then be dynami-
cally tuned, generating an optimized configuration file; sub-
sequent runs can then use the saved configuration file. In
the second mode, a previously tuned configuration file is ap-
plied statically during code generation. The second mode is
included since the C++ compiler can make the final code
incrementally more efficient when the choices are fixed.

3.2.2 Autotuning System and Choice Framework
The autotuner uses the choice dependency graph encoded

in the compiled application. This choice dependency graph
is also used by the parallel scheduler. This choice depen-
dency graph contains the choices for computing each region
and also encodes the implications of different choices on de-



pendencies.
The intuition of the autotuning algorithm is that we take a

bottom-up approach to tuning. To simplify autotuning, we
assume that the optimal solution to smaller sub-problems
is independent of the larger problem. In this way we build
algorithms incrementally, starting on small inputs and work-
ing up to larger inputs.

The autotuner builds a multi-level algorithm. Each level
consists of a range of input sizes and a corresponding algo-
rithm and set of parameters. Rules that recursively invoke
themselves result in algorithmic compositions. In the spirit
of a genetic tuner, a population of candidate algorithms
is maintained. This population is seeded with all single-
algorithm implementations. The autotuner starts with a
small training input and on each iteration doubles the size
of the input. At each step, each algorithm in the popula-
tion is tested. New algorithm candidates are generated by
adding levels to the fastest members of the population. Fi-
nally, slower candidates in the population are dropped until
the population is below a maximum size threshold. Since
the best algorithms from the previous input size are used
to generate candidates for the next input size, optimal algo-
rithms are iteratively built from the bottom up.

In addition to tuning algorithm selection, PetaBricks uses
an n-ary search tuning algorithm to optimize additional pa-
rameters such as parallel-sequential cutoff points for individ-
ual algorithms, iteration orders, block sizes (for data parallel
rules), data layout, as well as user specified tunable param-
eters.

All choices are represented in a flat configuration space.
Dependencies between these configurable parameters are ex-
ported to the autotuner so that the autotuner can choose a
sensible order to tune different parameters. The autotuner
starts by tuning the leaves of the graph and works its way
up. If there are cycles in the dependency graph, it tunes
all parameters in the cycle in parallel, with progressively
larger input sizes. Finally, it repeats the entire training pro-
cess, using the previous iteration as a starting point, a small
number of times to better optimize the result.

3.2.3 Runtime Library
The runtime library is primarily responsible for managing

parallelism, data, and configuration. It includes a runtime
scheduler as well as code responsible for reading, writing,
and managing inputs, outputs, and configurations. The run-
time scheduler dynamically schedules tasks (that have their
input dependencies satisfied) across processors to distribute
work. The scheduler attempts to maximize locality using a
greedy algorithm that schedules tasks in a depth-first search
order. Following the approach taken by Cilk [9], we dis-
tribute work with thread-private deques and a task stealing
protocol.

4. RESULTS
In this section, we present the results of the PetaBricks

autotuner when optimizing our multigrid algorithm on three
parallel architectures designed for a variety of purposes: In-
tel Xeon E7340 server processor, AMD Opteron 2356 Bar-
celona server processor, and the Sun Fire T200 Niagara low
power, high throughput server processor. These machines
provided architectural diversity, allowing us to show not
only how autotuned multigrid cycles outperform reference
multigrid algorithms, but also how the shape of optimal au-

totuned cycles can be dependent on the underlying machine
architecture.

To the best of our knowledge, there are no standard data
distributions currently in wide use for benchmarking mul-
tigrid solvers, so it was not clear what the best choice is
for training and benchmarking our tuned solvers. We de-
cided to use matrices with entries drawn from two differ-
ent random distributions: 1) uniform over [−232, 232] (un-
biased), and 2) the same distribution shifted in the positive
direction by 231 (biased). The random entries were used to
generate right-hand sides (b in Equation 1) and boundary
conditions (boundaries of x) for the problem. We also ex-
perimented with specifying a finite number of random point
sources/sinks in the right-hand side, but since the observed
results were similar to those found with the unbiased random
distribution, we did not include them in interest of space. If
one wishes to obtain tuned multigrid cycles for a different
input distribution, the training should be done using that
data distribution.

4.1 Autotuned multigrid cycle shapes
During the tuning process for the MULTIGRID-Vi algorithm

presented in Section 2.3, the autotuner first computes the
number of iterations needed for the SOR and RECURSEj choi-
ces before determining which is the fastest option to attain
accuracy pi for each input size. Representative training data
is required to make this determination. Once the number of
required iterations of each choice is known, the autotuner
times each choice and chooses the fastest option.

Figures 4(a) and 4(b) show the traces of calls to the tuned
MULTIGRID-V4 algorithms for unbiased and biased uniform
random inputs of size N = 4097, on the Intel machine. As
you can see, the algorithm utilizes multiple accuracy lev-
els throughout the call stack. In general, whenever greater
accuracy is required by our tuned algorithm, it is achieved
through some repetition of optimal substructures determined
by the dynamic programming method. This may be easier
to visualize by examining the resulting tuned cycles corre-
sponding to the autotuned multigrid calls.

Figures 5(a) and 5(b) show some tuned “V-type” cycles
created by the autotuner for unbiased and biased uniform
random inputs of size N = 2049 on the AMD Opteron ma-
chine. The cycles are shown using standard multigrid nota-
tion with some extensions: The path of the algorithm pro-
gresses from left to right through time. As the path moves
down, it represents a restriction to a coarser resolution, while
paths up represent interpolations. Dots represent red-black
SOR relaxations, solid horizontal arrows represent calls to
the direct solver, and dashed horizontal arrows represent
calls to the iterative solver.

As seen in the figure, a different cycle shape is used de-
pending on what level of accuracy is required by the user.
Cycles shown are tuned to produce final accuracy levels of
10, 103, 105, and 107. The leverage of optimal subproblems
is clearly seen in the common patterns that appear across
cycles. Note that in Figure 5(b), the call to the direct solver
in cycle i) occurs at level 4, while for the other three cycles,
the direct call occurs at level 5. This is an example of the au-
totuner trading accuracy for performance while accounting
for the accuracy requirements of the user.

Figures 5(c) and 5(d) show autotuned full multigrid cy-
cles for unbiased and biased uniform random inputs of size
N = 2049 on the AMD Opteron machine. Although similar
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Figure 5: Optimized multigrid V (a and b) and full multigrid (c and d) cycles created by the autotuner
for solving the 2D Poisson’s equation on an input if size N = 2049. Subfigures a) and c) were trained on
unbiased uniform random data, while b) and d) were trained on biased uniform random data. Cycles i), ii),
iii), and iv), correspond to algorithms that yield accuracy levels of 10, 103, 105, and 107, respectively. The solid
arrows at the bottom of the cycles represent shortcut calls to the direct solver, while the dashed arrow in
c)-i) represents an iterative solve using SOR. The dots present in the cycle represent single relaxations. Note
that some paths in the full multigrid cycles skip relaxations while moving to a higher grid resolution. The
recursion level is displayed on the left, where the size of the grid at level k is 2k + 1.

substructures are shared between these cycles and the “V-
type” cycles in 5(a) and 5(b), some of the expensive higher
resolution relaxations are avoided by allowing work to oc-
cur at the coarser grids during the estimation phase of the
full multigrid algorithm. The tuned full multigrid cycle in
Figure 5(d)-iv) shows how the additional flexibility of using
an estimation phase can dramatically alter the tuned cycle
shape when compared to Figure 5(b)-iv).

It is important to realize that the call stacks in Figure 4
and the cycle shapes in Figure 5 are all dependent on the spe-
cific situation at hand. They would all likely change were the
autotuner run on other architectures, using different train-
ing data, or solving other multigrid problems. The flexibility
to adapt to any of these changing variables by tuning over
algorithmic choice is the autotuner’s greatest strength.

4.2 Performance
This section will provide data showing the performance of

our tuned multigrid Poisson’s equation solver versus refer-
ence algorithms and heuristics. Test data was produced from
the same distributions used for training described in Sec-
tion 4. Section 4.2.1 describes performance of the autotuned
MULTIGRID-V algorithm, and Section 4.2.2 describes the per-
formance of the autotuned FULL-MULTIGRID algorithm.

4.2.1 Autotuned multigrid V algorithm
To demonstrate the effectiveness of our dynamic program-

ming methodology, we compare the autotuned MULTIGRID-V

algorithm against more basic approaches to solving the 2D
Poisson’s equation to an accuracy of 109, including several
multigrid variations. Results presented in the section were
collected on the Intel Xeon server testbed machine.

Figure 6 shows the performance of our autotuned multi-
grid algorithm for accuracy 109 on unbiased uniform random
inputs of different sizes. The autotuned algorithm uses in-
ternal accuracy levels of {10, 103, 105, 107, 109} during its re-
cursive calls. The figure compares the autotuned algorithm
with the direct solver, iterated calls to SOR, and iterated
calls to MULTIGRID-V-SIMPLE (labeled Multigrid). Each of
the iterative methods is run until an accuracy of at least 109

is achieved.
As to be expected, the autotuned algorithm outperforms

all of the simple algorithms shown in Figure 6. At sizes
greater than N = 65, the autotuned algorithm performs
slightly better than MULTIGRID-V-SIMPLE because it utilizes
a more complex tuned strategy.

Figure 7 compares the tuned algorithm with various heuris-
tics more complex than MULTIGRID-V-SIMPLE. The training
data used in this graph was drawn from the biased uniform
distribution. Strategy 109 refers to requiring an accuracy of
109 at each recursive level of multigrid until the base case
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Figure 4: Call stacks generated by calls to auto-
tuned MULTIGRID-V4 for a) unbiased and b) biased
random inputs of size N = 4097 on an Intel Xeon
server. Discrete accuracies used during autotuning
were (pi)i=1..5 = (10, 103, 105, 107, 109). The recursion
level is displayed on the left, where the size of the
grid at level k is 2k + 1. Note that each arrow con-
necting to a lower recursion level actually represents
a call to RECURSEi, which handles grid coarsening, fol-
lowed by a call to MULTIGRID-Vi.

direct method is called at N = 65. Strategies of the form
10x/109 refer to requiring an accuracy of 10x at each re-
cursive level below that of the input size, which requires an
accuracy of 109. Thus, all strategies presented result in a
final accuracy of 109; they differ only in what accuracies are
required at lower recursion levels. All heuristic strategies
call the direct method for smaller input sizes whenever it is
more efficient to meet the accuracy requirement.

The lines in Figure 7 are somewhat close together and
difficult to see on the logarithmic time scale, so Figure 8
presents the same data but showing the ratio of times taken
versus the autotuned algorithm. We can more clearly see
in this figure that as the input size increases, the most ef-
ficient heuristic changes from Strategy 101/109 to 103/109

to 105/109. The autotuner does better than just choosing
the best from among these heuristics, since it can also tune
the desired accuracy at each recursion level independently,
allowing greater flexibility. This figure highlights the com-
plexity of finding an optimal strategy and showcases the util-
ity of an autotuner that can efficiently find this optimum.

Another big advantage of using PetaBricks for autotuning
is that it allows a single program to be optimized for both
sequential performance and parallel performance. We have
observed our autotuner make different choices when running
on different numbers of cores. Figure 9 shows the speedup
achieved by our tuned MULTIGRID-V algorithms on our Intel
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Figure 6: Performance for algorithms to solve Pois-
son’s equation on unbiased uniform random data up
to an accuracy of 109 using 8 cores. The basic direct
and SOR algorithms as well as the standard V-cycle
multigrid algorithm are all compared to our tuned
multigrid algorithm. The iterated SOR algorithm
uses the corresponding optimal weight ωopt for each
of the different input sizes

testbed machine.

4.2.2 Autotuned full multigrid algorithm
In order to evaluate the performance of our autotuned

MULTIGRID-V and FULL-MULTIGRID algorithms on multiple
architectures, we ran them for problem sizes up to N = 4097
(up to 2049 on the Sun Niagara) for target accuracy levels of
105 and 109 alongside two reference algorithms: an iterated
V cycle and a full multigrid algorithm. The reference V cycle
algorithm runs standard V cycles until the accuracy target is
reached, while the reference full multigrid algorithm runs a
standard full multigrid cycle (as in Figure 3), then standard
V cycles until the accuracy target is reached.

We chose these two reference algorithms since they are
generally deemed good starting points for those interested
in implementing multigrid for the first time. Since they are
easy to understand and commonly implemented, we felt they
were a reasonable point of reference for our results. From
these starting points, performance tweaks can be manually
applied to tailor the solver to each user’s specific application
domain. The goal of our autotuner is to discover and make
these tweaks automatically.

Figure 10 shows the performance of both reference and au-
totuned multigrid algorithms for unbiased uniform random
data relative to the reference iterated V-cycle algorithm on
all three testbed machines. Figure 11 shows similar com-
parisons for biased uniform random data. The relative time
(lower is better) to compute the solution up to an accuracy
level of 105 is plotted against problem size.

On all three architectures, we see that the autotuned al-
gorithms provide an improvement over the reference algo-
rithms’ performances. There is an especially marked dif-
ference for small problem sizes due to the autotuned algo-
rithms’ use of the direct solve without incurring the overhead
of recursion. Speedups relative to the reference full multi-
grid algorithm are also observed at higher problem sizes:
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Figure 10: Relative performance of multigrid algorithms versus reference V cycle algorithm for solving the
2D Poisson’s equation on unbiased, uniform random data to an accuracy level of 105 on a) Intel Harpertown,
b) AMD Barcelona, and c) Sun Niagara.
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Figure 11: Relative performance of multigrid algorithms versus reference V cycle algorithm for solving the
2D Poisson’s equation on biased uniform random data to an accuracy level of 105 on a) Intel Harpertown, b)
AMD Barcelona, and c) Sun Niagara.

e.g., for problem size N = 2049, we observed speedups of
1.2x, 1.1x, and 1.8x on the unbiased uniform test inputs,
and 2.9x, 2.5x, and 1.8x on the biased uniform test inputs
for the Intel, AMD, and Sun machines, respectively.

Figures 12 and 13 show similar performance comparisons,
except to an accuracy level of 109. The autotuner had a
more difficult time beating the reference full multigrid algo-
rithm when training for both high accuracy and large size
(greater than N = 257). For sizes greater than 257, auto-
tuned performance is essentially tied with the reference full
multigrid algorithm on the Intel and AMD machines, while
improvements were still possible on the Sun machine. For
input size N = 2049, a speedup of 1.9x relative to the ref-
erence full multigrid algorithm was observed on the Niagara
for both input distributions. We suspect that performance
gains are more difficult to achieve when solving for both high
accuracy and size in some part due to a greater percentage
of compute time being spent on unavoidable relaxations at
the finest grid resolution.

4.3 Effect of Architecture on Autotuning
Multicore architectures have drastically increased the pro-

cessor design space resulting in a large variance in processors
currently on the market. Such variance significantly hinders
porting efforts of performance critical code.

Figure 14 shows the different optimized cycles chosen by
the autotuner on the three testbed architectures. Though

all cycles were tuned to yield the same accuracy level of 105,
the autotuner found a different optimized cycle shape on
each architecture. These differences take advantage of the
specific characteristics of each machine. For example, the
AMD and Sun machines recurse down to a coarse grid level
of 24 versus 25 on the Intel machine. The AMD and Sun’s
cycles appear to make up for the reduced accuracy of the
coarser direct solve by doing more relaxations at medium
grid resolutions (levels 9 and 10).

We found that the performance of tuned multigrid cycles
can be quite sensitive to where the autotuning is performed
in some cases. For example, the use of the autotuned full
multigrid cycle for unbiased uniform inputs of size N = 2049
trained on the Sun Niagara but run on the Intel Xeon re-
sults in a 29% slowdown compared to the natively trained
algorithm. Likewise, using the cycle trained on the Xeon
results in a 79% slowdown compared to using the natively
trained cycle on the Niagara.

5. RELATED WORK
Some multigrid solvers using algorithmic choice have been

presented in the past. SuperSolvers [3] is not an autotuner
but rather a system for designing composite algorithms that
leverage multiple algorithmic choices to solve sparse linear
systems reliably. Our approach differs by the use of tuning
algorithmic choice at different levels of the multigrid hier-
archy and the use of tuned subproblems during recursion.
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Figure 12: Relative performance of multigrid algorithms versus reference V cycle algorithm for solving the
2D Poisson’s equation on unbiased, uniform random data to an accuracy level of 109 on a) Intel Harpertown,
b) AMD Barcelona, and c) Sun Niagara.
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Figure 13: Relative performance of multigrid algorithms versus reference V cycle algorithm for solving the
2D Poisson’s equation on biased, uniform random data to an accuracy level of 109 on a) Intel Harpertown,
b) AMD Barcelona, and c) Sun Niagara.

Unfortunately, no direct performance comparison was pos-
sible for this paper due to the lack of availability of source
code.

Cache-aware implementations of multigrid have also been
developed. In [15], [14], and [11] optimizations improve
cache utilization by reducing capacity and conflict misses
during linear relaxation and inter-grid transfers. An auto-
tuner was presented in [5] to automatically search the space
of cache and memory optimizations for the relaxation step
over a variety of hardware architectures. The optimizations
presented in these related works are for the most part or-
thogonal to the approach taken in this paper. There is no
reason lower-level optimizations cannot be combined with
algorithmic tuning at the level of cycle shape.

A number of empirical autotuning frameworks have been
developed for building efficient, portable libraries in other
specific domains. PHiPAC [4] is an autotuning system for
dense matrix multiply, generating portable C code and search
scripts to tune for specific systems. ATLAS [17, 18] utilizes
empirical autotuning to produce a cache-contained matrix
multiply, which is then used in larger matrix computations
in BLAS and LAPACK. FFTW [7, 8] uses empirical au-
totuning to combine solvers for FFTs. Other autotuning
systems include SPARSITY [10] for sparse matrix computa-
tions, SPIRAL [13] for digital signal processing, UHFFT [1]
for FFT on multicore systems, OSKI [16] for sparse matrix
kernels, and an autotuning framework for optimizing paral-

lel sorting algorithms by Olszewski and Voss [12].

6. FUTURE WORK
An interesting direction we wish take this work is in the

domain of tuning multi-level algorithms across distributed
memory systems. The problem of discovering the best data
layout and communications pattern for such a solver is very
complex.

One specific problem this framework may help address is
when to migrate data between machines. For example, we
may want to use a smaller subset of machines once the prob-
lem is sufficiently small to reduce the surface area to volume
ratio of each machine’s working set. Doing so reduces the
communications overhead of relaxations, but incurs the cost
of the data transfer. We wish to extend the ideas presented
here to produce“optimal”algorithms parameterized not just
on size and accuracy, but also on data layout. The dynamic
programming search could then take data transfers into ac-
count when comparing the costs of utilizing various “opti-
mal” sub-algorithms, each with their own associated layouts.

Another direction we plan to explore is the use of dy-
namic tuning where an algorithm has the ability to adapt
during execution based on some features of the intermediate
state. Such flexibility would allow the autotuned algorithm
to classify inputs and intermediate states into different dis-
tribution classes and then switch between tuned versions of
itself, providing better performance across a broader range
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Figure 7: Performance for algorithms to solve Pois-
son’s equation up to an accuracy of 109 using 8
cores. The autotuned multigrid algorithm is pre-
sented alongside various possible heuristics. The
graph omits sizes less than N = 65 since all cases
call the direct method for those inputs. To see the
trends more clearly, Figure 8 shows the same data
as this figure, but as ratios of times taken versus the
autotuned algorithm.

of inputs. For example, we may want to switch between
cycle shapes during execution depending on the dominant
error frequencies observed in the residual.

7. CONCLUSIONS
It has become nearly impossible to tune individual algo-

rithms by hand for portable performance, and multigrid al-
gorithms are no exception. No single choice of parameters
can yield the best possible result for different user environ-
ments, which include problem, machine architecture, and
accuracy requirements. The high performance computing
community has always known that in many problem do-
mains, the best sequential algorithm is different from the
best parallel algorithm. Varying problem size and data sets
will also require different algorithms. Currently there is no
viable way for incorporating all these algorithmic choices
into a single multigrid program to produce portable pro-
grams with consistently high performance.

In this paper we introduced a novel dynamic program-
ming approach to autotuning multigrid algorithms. Our ap-
proach tunes with an awareness of accuracy that allows fair
comparison between various direct, iterative, and recursive
algorithmic types such that optimal solutions are built from
the bottom up. We demonstrated that the resulting tuned
cycles achieve excellent performance compared to algorith-
mically static implementations of multigrid.
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